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Abstract. Evaluating algorithms (particularly in the context of a com-
petition) typically ends with a ranking from best to worst. While this
ranking is sometimes accompanied by statistical significance tests on the
assessment metrics, sometimes associated with confidence intervals, the
ranks are usually presented as singular values. We argue that these ranks
should themselves be accompanied by confidence intervals. We investi-
gate different methods for computing such intervals, and measure their
behaviour in simulated scenarios. Our results show that we can obtain
robust confidence intervals for ranks using the Iman-Davenport test and
the pairwise Wilcoxon signed-rank test with Holm’s correction.

1 Introduction

Ranking a set of algorithms based on their ability to solve a task is a very
common part of machine learning research. This can be done in the context of
a competition (where a winner is declared), or in a comparative study, where a
proposed new method is measured against previous work. This ranking almost
always uses the mean value of an assessment metric measured on a set of n
test cases. This implicitly assumes that the ranking on the set of test cases is
equivalent to a ranking on the population of all potential cases from which the
test cases were sampled, and contributes to known robustness problems [1].

In addition, it is established that everything from the choice of metric [2, 3]
to the uncertainty in the ground truth [4] can affect the rankings and perceived
results of competitions [1, 5]. However, ranking methods are still widely used and
rarely questioned. At best, some statistical significance tests are presented to
support the significance of the results, but the rankings themselves are presented
as the end result of the study.

This study is motivated by all these uncertainties inherent in the ranking
of algorithms. It aims to compare different methods for computing confidence
intervals (CI) for ranks, using Monte Carlo simulations on synthetic data to
measure the power (i.e. ability to detect existing differences) and Type I error
rate (i.e. false detection of differences that don’t exist) of these methods. Based
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on the results, we introduce cirank, a confidence ranking Python library1 that
proposes several methods to compute CI for ranks based on a set of results.
Supplementary materials are available at https://esann25.adfoucart.be/.

2 Related works

A general procedure for computing CI for ranks was proposed in 2013 by Holm [6].
Its principle is straightforward: comparing m groups and using a statistical sig-
nificance test T for pairwise comparisons, the CI for the rank of a group g is set
as:

[1 + #sbg,m−#swg] with sbg/swg for significantly better/worse groups

and # for their number.

This idea was used by Al Mohamad et al. [7] in the context of ranking
institutions, using Tukey’s Honestly Significant Difference (HSD) test [8]. In the
same context, Zhang et al. proposed a Monte-Carlo method for estimating the
CI for ranks [9], where the observed values are used to generate bootstrapped
samples on which the rankings can be computed, resulting in a distribution of
ranks where the percentiles can be used to compute the CI.

Statistical tests for comparing algorithms based on an assessment metric have
been extensively studied, with some debate about which ones should be used.
Demšar argued in 2006 [10] for the use of the Iman-Davenport (ID) modification
of the Friedman test [11], with a Nemenyi post-hoc for pairwise tests. Benavoli et
al. have since argued [12] that the Nemenyi post-hoc is problematic in this case
as the result on a pair is influenced also by the ranks of the other algorithms (i.e.
if we add or remove an algorithm, all pairwise comparisons may be affected).

Their recommendation of using Wilcoxon signed-rank tests [13] (with a cor-
rection for family-wise error such as Holm’s correction [14]) are followed by
Wiesenfarth et al. [15] in their open-source toolkit for analyzing and visualizing
challenge results. Wiesenfarth et al. also propose a bootstrapping method for
estimating CI for ranks. This method, however, is documented as a way of as-
sessing ranking stability and not as an actual outcome of the study (as in: this
can supplement the discrete ranking in a discussion, but it doesn’t replace it).
Another argument against using Friedman’s test comes from Zimmerman and
Zumbo [16], who argue that as a multi-sample extension of the sign test (rather
than the Wilcoxon signed-rank test, as it is sometimes presented), Friedman’s
test lacks statistical power. They propose to instead use a rank-transformation
procedure such as proposed by Conover and Iman [17], and then to perform a
repeated-measures ANOVA on the ranks as a more powerful alternative.

In this work, we put these ideas together and test several options for building
a CI for ranks based on Holm’s procedure, using statistical tests appropriate for
comparing algorithms.

1https://gitlab.com/adfoucart/cirank
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3 Methods and materials

3.1 Methods for computing CI for ranks

Let us assume that Sij is the score of algorithm i on test case j and is numerical
or, at least, ordinal. This would be the case for instance in any regression tasks,
or in registration (e.g. RMSE) or segmentation problems (e.g. IoU) in image
analysis. We need to make the following assumptions about the test dataset
D and assessment metric M : (a) D is a random sampling of the population
of ”possible test cases” (all cases that could potentially be seen by the algo-
rithm); (b) the algorithms are independent from each other; (c) the metric M
is representative of the capability of the algorithm to perform the task in a
monotonically increasing or decreasing sense and (d) the annotation Yj provide
a reliable ground truth. While these assumptions are typically not verified in
real-world competitions [5], we consider here that addressing the violations of
these assumptions is outside of the scope of the statistical analysis of the results,
but rather something that should be discussed as a limitation on the validity of
the competition’s or study’s design.

Five methods for calculating confidence interval on ranks are considered: a
bootstrapping method (as proposed in [15]), and four methods based on multi-
sample statistical tests: ID with Nemenyi post hoc, ID with two-sided Wilcoxon
pairwise tests and adjusted p-values [14], the same with one-sided pairwise tests,
and ANOVA on ranks with Tukey’s HSD post hoc. If the result of the family-
wise test (ID or ANOVA) is not significant, the ranks are set as [1,m] for all
algorithms. Otherwise, we use Holm’s procedure as outlined above.

Details on the mathematical formulation and the implementation of the tests
are presented as supplementary materials.

3.2 Dataset

We base our experiments on synthetically generated data. Score distributions
are paired (measured on the same samples). We used publicly available results
from the grand-challenge.org website to determine a simple but realistic shape
for these distributions. Based on our analysis (see supplementary materials),
we determined that score distributions are usually asymmetrical, often with a
sharp peak and a long tail, and sometimes a few outliers. We therefore use a
Laplace asymmetric distribution L to act as a per-case difficulty, so that for a
sample of size n we get a distribution of difficulty {dj}nj=1 with dj ∼ L. Each
algorithm Ai is then associated with a normal distribution Ni(µi, σN ), so that
the score of algorithm i on case j is generated as sij = dj + nij , with nij ∼ Ni.
The mean of Ni therefore acts as a “bias” to push the algorithm to higher or
lower scores, and the variance of Ni acts as a “reliability” factor, making the
algorithm more or less likely to act erratically. A null hypothesis scenario of
equal algorithm performance is made by giving equal means to the Ni. This
allows us to verify that the significance level of the different tests is correctly
met. By increasing the difference between the means, we can create scenarios
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with performance differentials, and therefore compute the power of the different
tests to correctly influence the CI for algorithm ranks.

3.3 Monte Carlo simulation and evaluation

For each scenario, we use repetitions with different random seeds until the mea-
sure of interest has converged. All scenarios have κ = 2 for the Laplace asym-
metric distribution.

First, we test the family-wise Type I error (FWTI) for all ranking methods,
defined here as the ratio of simulations where the ranking is different than [1,m]
for at least one algorithm under null hypothesis conditions (same mean for all
Ni). We use m=5 and m=10 algorithms to test the impact of the number of
algorithms, and n=20 or n=40 to test the impact of the sample size. To be
acceptable, a ranking method should keep a FWTI < α, the significance level of
the tests. We then gradually increase δ, the difference between the means of the
successive Ni (so that the means are [0, δ, 2δ, . . . , (m− 1)δ]).

We use δ = {σN

4 , σN

2 , σN , 2σN}, and we measure the family-wise power (FWP)
in the same way as the FWTI. We also measure the individual power (IP) as the
ratio of pairwise tests that are significant at our chosen α, the distinctive power
(DP) as the average frequency that an algorithm has a distinct [i, i] confidence
interval (i.e. is completely disjoint from all others, with all pairwise p-values
< α), and the family-wise distinctive power (FWDP) as the frequency that all
algorithms have distinct [i, i] (i.e. the CI are [1, 1], [2, 2] . . . [m,m]).

We set α = 0.05 as a significance level for all tests. Each simulation is run
5000 times or until all measures have converged.

4 Results

We summarize in this section the main results. Full tables of results for all
experiments are available in supplementary materials. The main results for FWTI,
FWP and IP are shown in Fig. 1 for m=5, n=20. The bootstrapping method has
a very large FWTI error, which increases greatly with the number of algorithms
(around 30% for m=5, up to more than 90% for m=10). All other methods remain
below the 5% target, with ANOVA-Tukey < 1% and all other tests around 3-5%
for all m,n combinations tested.

In terms of FWP, Fig. 1 shows that ANOVA-Tukey is less powerful than the
ID-based methods (Wilcoxon or Nemenyi variants, which are essentially identical
with Wilcoxon slightly more powerful at lower separation levels).

For the IP, the two Wilcoxon methods are more powerful than Nemenyi and
ANOVA-Tukey. The DP and FWDP (not shown in Fig. 1) show similar trends, with
ID-Nemenyi stuck at 0% even if we increase the separation massively (theoretical
computations in supplementary materials show that it needs much larger sample
sizes to achieve FWDP > 0).

The one-sided Wilcoxon test is slightly more powerful in terms of FWP, IP,
DP and FWDP than the two-sided version at low separation levels while keeping
a similar FWTI error, but the difference is small. While we would expect the
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Fig. 1: FWTI, FWP and IP for different ranking methods for m=5 and n=20 at
α = 0.05. σN on the graph is the standard deviation of the Ni distributions
used to compute the scores of the algorithms, so that 1σN signifies that the
means of Ni and Ni+1 will be separated by one standard deviation. 1S and 2S:
one- and two-sided.

one-sided test to be much more powerful than the two-sided test, the difference
in the pairwise p-values is compensated by Holm’s correction, which impacts
both versions differently (more details in supplementary materials).

5 Conclusions

The best option among those tested here for computing confidence intervals
for algorithm ranks when the per-case metric is numerical is to use the Iman-
Davenport multisample test and, if its null hypothesis is rejected, to com-
pute pairwise one-sided Wilcoxon signed-rank tests, adjusting the p-values with
Holm’s procedure. Then, the ranking for each algorithm is

[1 + #sba,m−#swa] with sba/swa for significantly better/worse algorithm

If the ID test does not reject the null hypothesis, the CI should be [1,m] for all
algorithm ranks. Using this procedure to replace simple rankings in comparative
studies of algorithms makes the interpretation of the results easier: all algorithms
that have 1 in their CI are reasonably likely to be “the best”, all algorithms that
have overlapping CI cannot be conclusively ranked. Bootstrapping methods
should be avoided for this purpose as they are too sensitive to non-significant
differences in the sample distribution.

Future work will expand these analyses to different types of result distribu-
tions, and to categorical dependent variables (e.g. for classification tasks). In
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particular, the Wilcoxon test assumes that the distribution of differences is sym-
metrical, which is the case in our simulations but is not necessarily verified in
real results.
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